

Online Coordination of BESS and Thermostatically Control Loads for Shared Energy Optimization in Energy Communities

J.J. Moré[†], D. Deplano^{*}, A. Pilloni^{*}, A. Pisano^{*}, M. Franceschelli^{*}

†Instituto LEICI, Faculty of Engineering, UNLP - CONICET, Argentina *Department of Electrical and Electronic Engineering, University of Cagliari, Italy

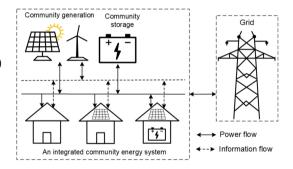
IEEE 20th International Conference on Automation Science and Engineering (CASE), August 2024

- 1 The problem of interest
- 2 Centralized MILP formulation
- 3 Results and discussion

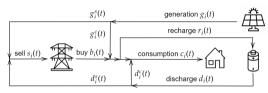
- 1 The problem of interest
- 2 Centralized MILP formulation
- Results and discussion

Cooperative energy management in renewable energy communities (CER)

- The set-up: Each member in the community may:
 - Consume energy
 - Produce energy (e.g., solar panels)
 - Store energy (e.g., battery energy systems)
- The objective: minimize the costs by exploiting incentives on the energy shared within the community
- The strategy: control the charge/discharge behavior of the batteries and some controllable loads



Energy flow model of a member within the energy community



Model of the (dis)charging behavior of the battery:

Model of the Thermostatically Control Load:

$$e_i^{ ext{MAX}}rac{d}{dt}arepsilon_i(t)$$
 = $\eta_i r_i(t)$ - $d_i(t)$,

 $C_i^{\text{TCL}} \frac{d}{dt} \Theta_i(t) = \zeta_i \underbrace{P_i^{\text{TCL}} \delta_i(t)}_{i} - R_i^{\text{TCL}} \left(\Theta_i(t) - \Theta_i^{\text{AMB}}\right),$

where:

- $e_i^{\text{MAX}} \in \mathbb{R}_{\geq 0}$ is the maximum energy capacity.
- $\varepsilon_i(t) \in [0,1]$ is state of charge (SoC).
- $\eta_i \in [0,1]$ is the efficiency

where:

• Θ_i , Θ_i^{AMB} : TCL/ambient temperatures.

- ullet $C_i^{
 m TCL}$, $R_i^{
 m TCL}$: thermal capacity/resistance.
- $\zeta_i \in [0,1]$: efficiency

The concept of shared energy (Italian regulation)

Given a continuous-time signal $x(t) \in \mathbb{R}$ with $t \in \mathbb{R}$ and a sampling time $\Delta \in \mathbb{N}_+$, we denote by $t_k = \Delta k$ with $k \in \mathbb{N}$ the discrete times at which the signal is sampled, yielding the discrete time signal $x(t_k) \in \mathbb{R}$. We also denote by $[x]_k^T$, where $k, T \in \mathbb{N}$ the vector collecting T samples of the continuous time signal starting from t_k and use the slender notation x when clear from the context:

$$\mathbf{x} = [x]_k^T = [x(t_k), \dots, x(t_{k+T-1})]^{\mathsf{T}}.$$
 (1)

Definition

The shared energy is the minimum between the energy fed into the network and the energy consumed by the community members in a given $W = \Upsilon \Delta$ with $\Upsilon \in \mathbb{N}$:

$$E_{sh}(oldsymbol{b}, oldsymbol{s}, \Upsilon) = \min \left\{ \sum_{i \in \mathcal{V}} g(oldsymbol{b}_i, \Upsilon), \sum_{i \in \mathcal{V}} g(oldsymbol{s}_i, \Upsilon)
ight\} \in \mathbb{R}^{\lceil k, \Upsilon
ceil},$$

where, given the horizon $H = h\Upsilon\Delta$ with $h \in \mathbb{N}$, the function g is defined as follows:

$$g(\boldsymbol{x}, \Upsilon) = \Delta \begin{bmatrix} \mathbf{1}^{\top} [x]_{k}^{\Upsilon - \mathsf{mod}(k, \Upsilon)} \\ I_{h-1} \otimes \mathbf{1}_{\Upsilon}^{\top} [x]_{(k+1)/\Upsilon] \Upsilon}^{(h-1)\Upsilon} \\ \mathbf{1}^{\top} [x]_{((k/\Upsilon)+h-1)\Upsilon}^{\mathsf{mod}(k, \Upsilon)} \end{bmatrix}.$$

Problem of interest

In the scenario of an energy community operating under an incentive scheme based on the self-consumption realized by the whole community, **the objective is to** minimize the costs for the whole community by maximizing the shared energy over the horizon.

- The problem of interest
- 2 Centralized MILP formulation
- Results and discussion

Optimization problem formulation: objective function and constraints

The objective function we aim to minimize is

$$f(\boldsymbol{v}) = p_e^{\mathsf{T}} \sum_{i \in \mathcal{V}} g(\boldsymbol{b}_i, \Upsilon) - p_{sh}^{\mathsf{T}} \underbrace{E_{sh}(\boldsymbol{b}, \boldsymbol{s}, \Upsilon)}_{}, \qquad \boldsymbol{v} = \begin{bmatrix} \boldsymbol{v}_1^{\mathsf{T}}, \cdots, \boldsymbol{v}_n^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}. \quad \text{and} \quad \boldsymbol{v}_i = \begin{bmatrix} \boldsymbol{r}_i^{\mathsf{T}}, \boldsymbol{d}_i^{\mathsf{T}}, \boldsymbol{d}_i^{c^{\mathsf{T}}}, \boldsymbol{g}_i^{c^{\mathsf{T}}}, \boldsymbol{\delta}_i \end{bmatrix}^{\mathsf{T}}.$$

The local constraints are:

$$\begin{array}{llll} \mathbf{0} & \leq & r_i & \leq & r_i^{\text{MAX}} \mathbf{1}, \\ \mathbf{0} & \leq & d_i & \leq & d_i^{\text{MAX}} \mathbf{1}, \\ \mathbf{0} & \leq & r_i & \leq & m_i^r \cdot (\varepsilon_i^{\text{MAX}} \mathbf{1} - \varepsilon_i), \\ \mathbf{0} & \leq & d_i & \leq & m_i^d \cdot (\varepsilon_i(k,T) - \varepsilon_i^{\text{MIN}} \mathbf{1}), \\ \mathbf{0} & \leq & d_i^c & \leq & d_i, \\ \mathbf{0} & \leq & g_i^c & \leq & g_i, \\ \mathbf{0} & \leq & b_i & \leq & b_i^{\text{MAX}} \mathbf{1}, \\ \mathbf{0} & \leq & s_i & \leq & s_i^{\text{MAX}} \mathbf{1}, \\ \mathbf{\Theta}_i^{\text{MIN}} \mathbf{1} & \leq & \mathbf{\Theta}_i & \leq & \mathbf{\Theta}_i^{\text{MAX}} \mathbf{1}, \end{array}$$

Optimization problem formulation: objective function and constraints

Together with those related to the (dis)charge dynamics of the battery:

$$\frac{e_i^{\text{MAX}}}{\Delta} \left(\mathbf{D}_{\varepsilon} \varepsilon_i(k, T) - \mathbf{e}_1 \varepsilon_i(t_{k-1}) \right) = \eta_i r_i(k, T) - d_i(k, T), \quad \text{where} \quad \boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{D}_{\varepsilon} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 1 \end{bmatrix}.$$

and the TCL's dynamics:

$$\mathbf{D}_{\mathbf{i}}^{\Theta}\Theta_{i}(k,T) - \mathbf{e}_{1}e^{-\alpha_{i}\Delta}\Theta_{i}(t_{k-1}) = \left(1 - e^{-\alpha_{i}\Delta}\right)\Theta_{i}^{\mathrm{AMB}} + \left(1 - e^{-\alpha_{i}\Delta}\right)\zeta_{i}R_{i}^{\mathrm{TCL}}P_{i}^{\mathrm{TCL}}\delta_{i}(k,T) \qquad , \quad \text{where} \quad \mathbf{D}_{\mathbf{i}}^{\Theta} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ -e^{-\alpha_{i}\Delta} & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & -e^{-\alpha_{i}\Delta} & 1 \end{bmatrix}.$$

Diego Deplano

Optimization problem formulation: MILP transformation

We compactly write the optimization problem as follows:

$$\min_{oldsymbol{v},oldsymbol{ heta}} \quad p_e^{\scriptscriptstyle au} \sum_{i \in \mathcal{V}} g(oldsymbol{b}_i, \Upsilon) - p_{sh}^{\scriptscriptstyle au} E_{sh}(oldsymbol{b}, oldsymbol{s}, \Upsilon),$$

s.t. Local constraints $\forall i \in \mathcal{V}$.

By using the standard trick $z = \min\{x, y\} \Rightarrow z \le x$ and $z \le y$, we obtain an LP formulation:

$$\min_{oldsymbol{v},oldsymbol{ heta}} \quad p_e^{\scriptscriptstyle au} \sum_{i \in \mathcal{V}} g(oldsymbol{b}_i, \Upsilon) - p_{sh}^{\scriptscriptstyle au} oldsymbol{ heta},$$

s.t. Local constraints $\forall i \in \mathcal{V}$,

$$\theta - \sum_{i \in \mathcal{V}} g(\boldsymbol{b}_i, \Upsilon) \leq \mathbf{0},$$

$$\theta - \sum_{i \in \mathcal{V}} g(s_i, \Upsilon) \leq 0.$$

- The problem of interest
- 2 Centralized MILP formulation
- 3 Results and discussion

Numerical Simulations: members consumption and generation powers

Six agents community example

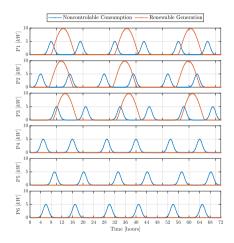
• Sampling time: $\Delta = 15$ minutes,

• Horizon time: H = 12 hours

• Simulation time: 3 days.

Param.	Value	Param.	Value
$r_i^{ ext{MAX}}$	5kW	$d_i^{ ext{ iny MAX}}$	5kW
$b_i^{ ext{MAX}}$	20kW	$s_i^{ ext{MAX}}$	20kW
$\Theta_i^{ ext{max}}$	20°C	$\Theta_i^{ ext{MIN}}$	18°C
$R_i^{ m TCL}$	83.33°C/kW	$C_i^{ m TCL}$	300kWs/°C
$P_i^{ m TCL}$	0.2kW	ζ_i	0.8
$arepsilon_i^{ ext{MAX}}$	0.9	$arepsilon_i^{ ext{ iny MIN}}$	0.1
m_i^r	50kW	m_i^d	50kW
$e_i^{ ext{MAX}}$	20kWh	η_i	0.8

Table: Constants and parameters in simulation



Diego Deplano

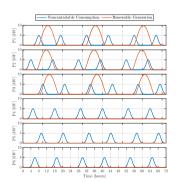
Numerical Simulations: members buy (b_i) , recharge (r_i) and discharge (d_i) powers

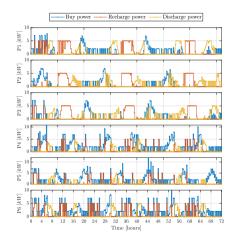
Six agents community example

• Sampling time: $\Delta = 15$ minutes,

• Horizon time: H = 12 hours

• Simulation time: 3 days.





Diego Deplano

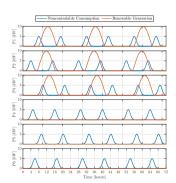
Numerical Simulations: members batteries SoC ($\varepsilon_i(k,T)$)

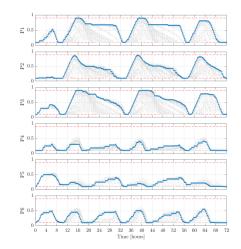
Six agents community example

• Sampling time: $\Delta = 15$ minutes,

• Horizon time: H = 12 hours

• Simulation time: 3 days.





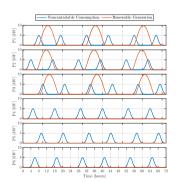
Numerical Simulations: members TCL temperatures $(\Theta_i(k,T))$

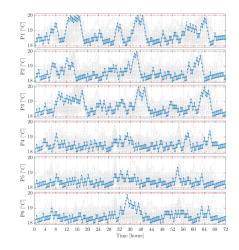
Six agents community example

• Sampling time: $\Delta = 15$ minutes,

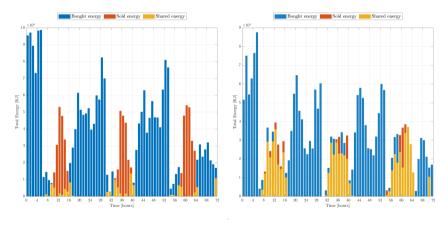
• Horizon time: H = 12 hours

• Simulation time: 3 days.





Numerical Simulations: 10% cost reduction via shared energy increase



No optimization

With optimization

Online Coordination of BESS and Thermostatically Control Loads for Shared Energy Optimization in Energy Communities

Thank you for your attention!

Diego Deplano

Email: diego.deplano@unica.it
Webpage: https://diegodeplano.github.io/

